
Big Data Analytics for Detecting Host Misbehavior
in Large Logs

Daniel Gonçalves1, João Bota2, Miguel Correia1

1INESC-ID, Instituto Superior Técnico, Universidade de Lisboa 2Vodafone Portugal
daniel.dias.g@gmail.com, joao.bota@vodafone.com, miguel.p.correia@tecnico.ulisboa.pt

Abstract—The management of complex network infrastruc-
tures continues to be a difficult endeavor today. These infrastruc-
tures can contain a huge number of devices that may misbehave
in unpredictable ways. Many of these devices keep logs that
contain valuable information about the infrastructures’ security,
reliability, and performance. However, extracting information
from that data is far from trivial. The paper presents a novel
approach to assess the security of such an infrastructure using its
logs, inspired on data from a real telecommunications network.
We use machine learning and data mining techniques to analyze
the data and semi-automatically discover misbehaving hosts,
without having to instruct the system about how hosts misbehave.

I. INTRODUCTION

Over the past few years, many organizations with large
network infrastructures started to record huge amounts of
data in logs. These logs contain data about the behavior of
users, computers and network devices. Telecommunication
companies such as Vodafone PT have complex infrastructures
in order to support their business. These infrastructures include
a multitude of network devices such as routers, switches, fire-
walls, authentication servers, and base stations. Log data can
be used for different purposes including application debugging,
performance monitoring, fault diagnosis, and security.

Extracting useful information from these logs is far from
trivial [1]. Their sheer size turns tasks such as collecting and
moving the logs to machines that will process them a time-
consuming operation that requires considerable bandwidth.
Moreover, today’s logs are highly susceptible to data repeti-
tion, inconsistency, and noise, due to their large size, complex
structure, and multiple heterogeneous sources.

This paper presents an approach for analyzing large logs for
extracting security information. The size of the data involved
has led the problem to be called big data analytics for security
[2], [3] and data mining and machine learning techniques to
be used to tackle it.

Log analysis is being increasingly used for intrusion de-
tection, i.e., to identify malicious activity [1], [4], [5]. The
most common forms of analysis of logs for security are
misuse detection – looking for known suspicious patterns
(signatures) in the logs –, anomaly detection – looking for
deviations in relation to what is considered good behavior –
and policy-violation detection – looking for violations of a
certain policy [1]. Despite their interest, these approaches re-
quire manual definition of what is good/bad behavior (misuse

and policy-violation detection) or training the detector with
large datasets of good behavior (anomaly detection). Worse,
the most common practices are manual analysis and signature-
based detection [4].

In the paper we present an approach to detect misbehavior
in logs without these shortcomings. The approach combines
data mining and both supervised and unsupervised machine
learning in order to make the detection process as automatic
as possible, without having to instruct the system about
how entities misbehave, although humans cannot be entirely
removed from the loop. The approach can be applied to
detect misbehavior of different entities, e.g., of hosts, routers,
users, base stations, firewalls, etc. In this paper, hosts were
chosen as they are the most common targets of intrusion
in an organization and can misbehave in several different
ways: participating in distributed denial of service attacks,
exfiltrating confidential data, sending spam mail, mapping the
network, attacking other nodes, etc.

The approach involves: (1) data mining a set of features
from the logs (e.g., bytes sent/received, number of sessions);
(2) using an unsupervised machine learning technique – clus-
tering – to create sets of entities (of hosts in this paper) with
similar behaviors; (3) using a supervised machine learning
technique – linear classification – to detect misbehaving sets
of entities. Sets have to be classified manually the first time
clustering is done and whenever the classification fails for
some set. However, the fact that the process is done for sets of
entities about which much information was collected (features)
instead of isolated entities, greatly simplifies manual classifica-
tion. Moreover, this approach does not require defining how a
host misbehaves, just to classify clusters as misbehaving given
the values observed for the features.

The main contributions of this work are: (1) an approach for
detecting host misbehavior in large logs using a combination
of data mining and both supervised and unsupervised machine
learning; (2) a set of features relevant for detecting misbehav-
ing hosts; (3) an experimental evaluation of the approach using
large logs from a telecommunications infrastructure.

II. NETWORK INFRASTRUCTURE LOGS

This section provides some background on logs and specific
information on the logs used in the experimental evaluation
of Section IV, which were supplied by Vodafone PT. The fact
that we describe these logs does not mean that the approach is

1

(a) Definition and configuration of the detection mechanism

(b) Execution of the detection mechanism in runtime

Figure 1: Fluxograms of the two main phases of the proposed approach

specific for them – it is not – only that more detail is useful for
the reader to understand the approach. The logs we consider
were taken from DHCP servers, authentication servers, and
firewalls, all from major vendors.

Logs are typically text files with an entry (an event) per
line, each line with several fields separated by white spaces
or commas (e.g., in comma-separated values format [6]). The
actual fields found depend on the type of device and the
way logging is configured. Common fields are IP and MAC
addresses, timestamps, and human-readable messages. The
format of logs can vary, but this is the most common format
and the one we found in practice.

The entry of a DHCP server log has the format “ID, date,
time, description, IP address, host name, MAC address”, where
ID identifies the event, date and time indicate when the event
happened, description is text that explains what the event was,
IP address, host name, and MAC address identify the host
running the DHCP client. DHCP server logs play an important
role in the approach as they tell the period when each IP
address was used by each host.

A second case are logs from authentication servers. These
servers are contacted by hosts joining the network as part of
an 802.1X authentication process. These logs keep information
about each host that attempts to join the network, including a
timestamp, a sequence number, host MAC and IP addresses,
number of bytes the host sent/received in the session, session
duration, and several other items. Examples of data extracted
from these logs are how often users log in and the data flow
of each session.

Firewalls logs have much data about communication, e.g.,
send/receiver IP/ports, action (accepted/dropped), connection
status, connection type, number of bytes, reason for alert, rule
or security policy applied to the connection, a comment, etc.

III. THE APPROACH

This section presents our approach, starting with an
overview of how it works (Section III-A), then detailing its
several aspects in the rest of the sections.

A. Overview of the approach

The approach can be divided in two main phases. The first
consists in executing a set of steps for defining and configuring
the detection mechanism and the second in executing the
detection mechanism in runtime.

The first phase particularizes the approach for a certain
entity of interest (hosts in our case) and a set of logs (those of
Section II in our case). Figure 1a shows the steps of this phase.
The first (left of the figure) defines how data in the logs will
be normalized, e.g., how inconsistent/redundant data will be
removed and data from multiple sources will be combined. The
second consists in selecting the features that will be used to
characterize the available data. This step also involves defining
the time period (Tf) from which the features are extracted
(e.g., Tf = 1 day). The third step defines how the features are
extracted from the logs.

After these initial steps of phase 1, a first processing of logs
is performed (fourth to sixth steps). If the features depend on
a single period Tf , then only the parts of logs for that period
are analyzed. However, there can be some features that depend
also on the previous period (or more), so two periods (or more)
may have to be analyzed. The fourth step consists in extracting
the features from the logs while also normalizing them. The
fifth in using clustering to group entities (e.g., hosts) based on
the features and analyzing them manually to classify them in
categories such as “behaving normally” and “misbehaving”.
Finally, the sixth step consists in defining the classification
model, which is the output of this phase (right of the figure).

The second phase is the normal period of execution (Figure
1b). For every time period the following sequence of steps is
executed. First, the features are extracted from the logs jointly
with normalization and, second, they are clustered producing
clusters, similarly to what happens in the first phase. The
third step consists in classifying the clusters based on the
classification model (which was the output of the first phase).
Then, if the classification is successful (Yes), the model is
updated; otherwise (No) the clusters not correctly classified

2

have to be analyzed manually and the model is also updated.
This process may have to be iterated until the classification
process is able to classify all the clusters automatically.

B. Data normalization

As already mentioned, the nature of log data requires
normalization. In this section we explain briefly a few normal-
ization techniques, mostly borrowed from [4], [7]. Due to their
size, logs should not be normalized before feature extraction,
but during feature extraction (see Figure 1).

Hosts are identified in logs in several ways: domain names,
IP addresses, and MAC addresses. Moreover, some IP ad-
dresses are assigned dynamically using DHCP so they can
be used by different hosts. To identify hosts with dynamic
addresses we used their MAC addresses, extracting (IP, MAC)
mappings from the DHCP logs.

Mapping from static IPs to MACs cannot be extracted from
DHCP logs. In the infrastructure we observed that all hosts
with static IPs had domain names, so we used them as unique
identifiers. If there were hosts with static IPs but no names,
the IPs could be used as identifiers.

Some servers store in logs repeated entries, or very similar
entries. These repetitions or almost repetitions can be removed
to normalize logs (we removed only strict repetitions).

Some networks have facilities in more than one time zone
so timestamps may be inconsistent in different logs. In that
case timestamps have to be normalized to one time zone, but
this was not our case.

C. Feature selection

A critical part of our approach is to have a set of features
that allow distinguishing well-behaved entities (hosts) from
misbehaving ones. We spent a few months devising a list of
features as long as possible, combining features found in the
literature with many others inspired by the logs we had and
others we discovered. Notice that the goal is not to select
features that are known to separate good from bad behavior,
but to select features that are candidates to do that separation;
the approach works even if some features are bad choices,
and making good choices would require knowing a priori how
entities misbehave, which is something we do not want to
make assumptions about, as already explained.

The features use data from: (1) one or more log entries; (2)
other features; (3) one period alone or in combination with the
previous one; (4) external datasets (e.g., lists of suspicious IP
addresses).

Currently all features we consider are numeric and there are
three patterns that span several: (1) some features count the
number of occurrences of something, so they begin with Num-
ber of ; (2) others correspond to the number of occurrences of
a particular characteristic of the feature divided by the total
number of occurrences, so they begin with Fraction of (their
values fall in the interval [0, 1]); (3) a third group counts the
number of different windows of Tw units of time where a
threshold Kw is exceeded, with the window being shifted Ts
at a time.

Session-based

1 Number of sessions
2 Number of long sessions
3 Fraction of sessions of long duration
4 Burst bytes sent
5 Burst bytes received

Authentication-based

6 Number of admin authentications tries
7 Number of failed admin authentications tries
8 Fraction of admin authentications tries
9 Burst of admin authentications tries

10 Number of authentication tries
11 Number of failed authentication tries
12 Fraction of failed authentication tries
13 Burst of authentication tries

Connection-based

14-15 Number of packets sent blocked/allowed
16-17 Number of packets received blocked/allowed

18 Burst of packets sent
19 Burst of packets received
20 Fraction of packets sent blocked
21 Fraction of packets received blocked

22-24 Number of TCP/UDP/ICMP packets sent blocked
25-27 Fraction of TCP/UDP/ICMP packets sent blocked

Endpoint-based

28 Number of IP addresses in the top of malicious subnets
29 Number of IP addresses with bad reputation
30 Number of external IP addresses not contacted last Tf period
31 Number of internal IP addresses not contacted last Tf period
32 Number of external IP address locations not found last Tf period
33 Number of external IP addresses in the malicious AS list
34 Number of external IP addresses in the spam AS list

Table I: Extracted features

Some features use two other terms. Internal IP addresses
are those that were correctly authenticated through the 802.1X
protocol (i.e., hosts from the organization, outsourced per-
sonnel and other authorized machines). The rest are called
external IP addresses.

Table I shows the features we defined for classification
of hosts. We divided them in four groups. Session- and
authentication-based features are extracted from authentication
logs, while connection- and endpoint-based features are ex-
tracted from firewalls logs. Some of these features depends on
information from the previous period, e.g., numbers 30 to 32.
We did not define any, but there might be features representing
whitelists [4].

The features that use external data are: 28– uses data from
the Internet Storm Center (ISC) list of the top malicious sub-
nets; 29– uses IPs from the AlienVault list of IP addresses with
bad reputation; 33– uses data from the Sitevet list of worse
Autonomous Systems (ASs); 34– based on the CleanTalk list
of ASs with more spam activity.1 Other sources of similar data
may be used instead of these or to define similar features.

D. Feature extraction

Big data takes time and bandwidth to be moved to different
machines. Therefore, it is advisable to process large logs in
the devices that generate them, as close as possible to them
(in terms of number of network hops), or in a distributed way.

1The four data sets are available at: https://isc.sans.edu/block.txt
http://reputation.alienvault.com/reputation.data http://sitevet.com/hosts/
https://cleantalk.org/blacklists/asn

3

The MapReduce paradigm was introduced by Google for
processing data with these characteristics [8] and its open
implementation in Hadoop [9] is widely adopted. This model
consists of two phases: map and reduce. Inputs are handled as
sequences of key/value pairs. In the first phase, the mappers
transform these pairs in other, intermediate, key/value pairs.
In the second, reducers receive intermediate pairs grouped by
key and produce the result of the processing. Although simple,
this model has been shown to be powerful enough to process
many types of large data.

Some examples of feature extraction aspects follow.
A preliminar bulk of log processing has to be done to obtain

a table that maps dynamic IP addresses to MAC addresses per
period of time [ta, tr] (from IP assignment to release). Recall
that features are extracted for a certain period of time with
duration Tf , say [ti, ti+Tf]. The table is obtained by analyzing
DCHP logs following these rules: (1) an IP assignment entry
in the log defines ta for an (IP, MAC) mapping; (2) a release
entry in the log defines tr for a mapping; (3) an assignment
for a mapping without a later release entry, sets tr to ti + Tf
for that mapping; (4) an IP renew entry to which there is no
corresponding assignment entry, sets ta to ti.

Feature extraction is done by a small number of MapReduce
jobs, although each job extracts many features. We illustrate
the process of extracting a feature using a MapReduce job with
an abstract example of a mapper and a reducer to count bursts.
The map function has the objective of extracting fields of
each log’s entry, takes as input pairs {offset, line} and returns
as output tuples {(IP, timestamp), (type, MAC, hostname,
timestamp)}. The reduce function counts bursts of specific
feature, takes as input tuples {(MAC, timestamp), List(field
1, field 2, . . . , timestamp)} and returns as output pairs {MAC,
burst count)}.

Accessing external data sources may be a major cause of
log processing delay. Whenever possible this data should be
copied to the servers where log processing is done. However,
sometimes this is not possible, e.g., when the objective is
to verify if a certain IP address belongs to an AS. We
implemented a cache to avoid repeating lookups for the same
pair (IP address, AS number).

E. Clustering

Machine learning techniques are often classified in two cat-
egories. Unsupervised learning algorithms do not require pre-
classified input data, whereas supervised learning algorithms
take as input data sets with classified data. Classifying data
is an onerous process and we do not want to define what
misbehavior is, so we use unsupervised machine learning.

We use an unsupervised machine learning technique denom-
inated clustering. The idea of clustering is to group related
entities based on a set of features. In our case, for each
entity (host) there is a vector with one value for each of the
features of Table I. Based on these vectors, related or similar
entities are grouped in clusters. Then, these clusters have
to be classified but, on the contrary of supervised learning,
only a few clusters have to be classified, instead of many

individual instances. Moreover, for this kind of application
it is reasonable to make the assumption that larger clusters
contain well-behaved entities, so the priority is to analyze the
smallest ones.

In our approach, typically several features taking very differ-
ent values will be used, so it is convenient to use normalization
[10]. The idea is to normalize the values of every feature to
be between [0, 1]. This can be done by dividing all features
by the maximum value, but in some cases outliers with high
values may push most values towards 0 so we may divide the
feature values by a lower value and accept some saturation
(see Section IV-A).

Our approach aims to separate well-behaved from misbe-
having hosts, so the clustering algorithm has to separate hosts
with different behavior, being different behavior expressed
by different values of features. We use a probability-based
clustering algorithm, the Expectation-Maximization (EM) al-
gorithm [10]. In relation to other clustering algorithms such as
k-means, EM has the benefit of not requiring prior knowledge
of the distribution of each feature and other parameters.
Therefore, EM has been shown to be adequate for clustering
of large data sets [11]. EM works iteratively by starting with
parameter guesses, uses them to calculate the probability of
each entity/host being on a cluster, uses these probabilities to
estimate the parameters again, and iterates. EM does not define
the number of clusters, which is an input of the algorithm.

Setting the number of clusters is an important aspect. As
mentioned, it is reasonable to assume that misbehaving hosts
are a minority so the number of clusters has to be large enough
for clusters of misbehaving hosts to appear. It should also be
larger than the (unknown) number of classes of host behavior.

F. Cluster analysis

As explained in the previous section, clustering is done
using the numeric, normalized, values of features. However,
these values are hard to interpret by humans during manual
analysis so we define qualitative feature values to help with
that process. These qualitative values are defined at two levels.

First, features are labelled according to how well they
characterize a cluster. For each cluster, we label its features
with three tags: primary, secondary, non-relevant. Primary
features are those that best characterize a given cluster. A
feature is tagged as primary for a cluster if it has a small
deviation within that cluster (e.g., the number of sessions is
a primary feature in a cluster if all hosts in that cluster have
similar numbers of sessions), i.e., if its standard deviation is
less than α (e.g., α = 0.2). Non-relevant features are those that
do not characterize the cluster, i.e., those in which the mean
and the deviation are very similar in all clusters (they differ by
less than a certain θ, e.g., θ = 0.001). Secondary features also
characterize the cluster but less strongly than primary clusters.
A feature is tagged as secondary in a cluster if it is neither
primary nor non-relevant.

Second, features are labelled according to their mean in
the cluster. We classify qualitatively the values of the mean

4

as: very high (VH)]0.8, 1]; high (H)]0.6, 0.8]; medium (M)
]0.4, 0.6]; low (L)]0.2, 0.4]; very low (VL)]0.0, 0.2];.

With these qualitative values it is possible to assess what
differentiates clusters and what their main characteristics are.
For instance, it may be observed that nodes in a cluster are
different because they send too much traffic (e.g., because they
participate in denial-of-service attacks or exfiltrate data) or
access malicious hosts or domains (e.g., because they contain
malware that contacts a command and control center).

G. Classification

The existing approaches for detecting malicious hosts based
on clustering require intensive human labor, either to keep
a database of what is considered malicious behavior, or to
analyze the data obtained to know if there is malicious
behavior [4]. We propose using classification of clusters to
minimize this effort.

Classification algorithms assign entities to certain classes
based on a set of features. These algorithms can be used in
security to predict whether an entity (e.g., a host) is having
malicious behavior or not given a set of features that allow
discerning it. In our approach we have the features used to
create the clusters so we use them also for classification of
entities as malicious or not. More specifically, we aim to
classify entities by classifying the clusters outputted by the
clustering process as malicious or not, not individual hosts
(see the second and third steps in Figure 1b). The reason is
that it is simpler to examine a few clusters of entities than
many individual entities (hosts in our case).

The clusters for each time period Tf are introduced into
the classification algorithm, and after checking the existence
of errors the model is updated (see figure). With a period of
one day it takes long to obtain enough data to increase the
accuracy of the model. Therefore, the classification algorithm
used is Naive Bayes as it converges quicker than other models
and needs less data to obtain accurate results [10].

Our approach requires considerable human labor in the
first phase (Figure 1a) in order to classify the clusters and
create the classification model. After that, human intervention
is needed only if the classification results are wrong, updating
the model. Thus over time the accuracy of the classification
model increases.

The classification model is based on the mean and the
standard deviation of each feature of each cluster. Each time
the classification algorithm is executed, we obtain a class
for the introduced clusters data. These classes can be as
simple as “normal” and “abnormal”, or more detailed as:
“abnormal-high-sender”, “abnormal-many-sessions”, “normal-
workstation”, “normal-server”, “normal-printer”. In any case,
the abnormal entities will normally be further investigated.

IV. EXPERIMENTAL EVALUATION

This section describes the experimental evaluation of our
approach. The objective is threefold: (1) to show that our
clustering mechanism can identify abnormal behavior (Section
IV-A); (2) to show that the use of a classifier can automate

Log Extracted Data Mapper Size Reducer Size Others

Firewall Previous Day Input 358 86 290
DHCP IP-MAC Mapping 83 106 162
Authentication serv. Session Features 145 199 274
Authentication serv. Authentication Features 65 136 81
Firewall Connection Features 120 172 242
Firewall End-point Features 226 528 502

Total 997 1227 1551

Lines of code common to all jobs 430

Table II: MapReduce lines of code for normalization and
feature extraction (Java).

the process of assigning classes to clusters (Section IV-B); (3)
to assess the performance of the process (Section IV-C).

In order to evaluate our approach we used logs provided
by Vodafone Portugal for 5 consecutive days (23-27 February
2015). We used a time period Tf = 1 day. Some features
require data from the previous period (day) to be computed,
so the first phase of the approach (recall Figure 1) was applied
to the logs from the day 2. The second phase was applied to
the other three days (3–5).

Our current prototype has two main components. First,
normalization and feature extraction are performed by a set
of Hadoop MapReduce jobs. We have 10 mappers and 10
reducers, adding up to 4205 lines of code written in Java. Sec-
ond, the clustering and classification are done using WEKA,
a well-known data mining software package written in Java
[10]. Table II shows the number of lines of code for each
MapReduce job plus the auxiliary classes.

We run Hadoop in a single server due to practical reasons.
Nevertheless, we setup Hadoop to use the 32 cores of the
server that correspond to 16 servers with 2 cores, which is the
default configuration of Hadoop. In order to have an efficient
configuration, we followed the Hortonworks recommenda-
tions2. Moving the data into the server was as considerable
effort that took several days, showing the importance of
running at least the mappers as close as possible to the logs’
locations.

A. Discovering intrusions with clustering

After extracting the features using Hadoop, they have to
be normalized to the interval [0, 1]. To do so we have to
define the maximum for each feature, i.e., the value by which
the values of each feature will be divided. As mentioned, it
is not necessarily convenient to use the actual maximum as
that value may push values towards 0, making it difficult
to differentiate them. Therefore, we choose the maximum
for each feature by trial and error, analyzing the percentage
of computers within each qualitative range (VH, H, M, L,
VL) for a tentative maximum, and trying with another value
until an acceptable distribution is reached. The final values
we selected for each feature are in Table III. The features
relative to fractions were excluded because of the bad results
we obtained when applying the clustering algorithm to our logs
(but we expect they may be useful in other cases). In addition,
there are two columns which represent the percentage of hosts

2http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.6.0/
bk installing manually book/content/rpm-chap1-11.html

5

Feature Maximum VL % L % M % H % VH % Saturated % Zero %

1 10 82.02 10.88 4.34 1.20 1.57 1.13 54.70
2 5 88.25 8.70 2.27 0.49 0.28 0.14 58.94
4 550 95.62 0.61 1.01 1.01 1.76 1.31 93.81
5 550 98.59 0.16 0.33 0.38 0.54 0.45 97.84
6 5 100.00 0.00 0.00 0.00 0.00 0.00 100.00
7 5 100.00 0.00 0.00 0.00 0.00 0.00 100.00
9 5 100.00 0.00 0.00 0.00 0.00 0.00 100.00

10 5 66.12 17.47 2.72 5.98 7.71 5.89 58.01
11 5 98.57 0.82 0.12 0.16 0.33 0.33 96.30
13 50 97.89 0.35 0.87 0.23 0.66 0.56 97.68
14 1000 88.70 4.74 1.62 0.91 4.03 3.19 45.30
15 1000 80.84 2.46 2.56 2.98 11.16 8.79 36.39
16 500 98.94 0.14 0.05 0.14 0.73 0.70 94.11
17 1000 86.89 4.41 3.35 1.59 3.75 2.04 68.89
18 545 49.12 12.43 10.86 12.94 14.65 2.79 37.49
19 500 82.39 3.31 3.45 6.66 4.20 2.16 79.70
22 600 90.29 2.51 2.18 1.03 3.99 3.38 54.35
23 500 92.78 3.12 0.75 0.47 2.88 2.49 58.80
24 150 88.42 9.80 0.61 0.28 0.89 0.47 80.54
28 5 100.00 0.00 0.00 0.00 0.00 0.00 100.00
29 10 99.62 0.07 0.05 0.05 0.21 0.21 99.44
30 100 97.07 0.96 0.45 0.28 1.24 1.08 91.18
31 100 99.84 0.05 0.02 0.00 0.09 0.09 98.80
32 100 98.80 0.28 0.16 0.26 0.49 0.38 96.51
33 300 97.63 0.45 0.23 0.19 1.50 1.48 93.18
34 250 94.30 1.62 0.82 0.26 3.00 2.77 79.23

Table III: Maximum values of each feature.

that exceed the maximum value of the feature (saturated), and
the percentage of computers whose value is 0 (zero). Some
features have a value of 100% in column VL as all hosts had
the feature equal to zero.

The next step is to choose the number of clusters. We
executed the clustering algorithm varying the number of
clusters from 15 to 25, then choose the number to use with the
following criteria: (1) the percentage of hosts in each cluster
shall be small with exception of the clusters that represent the
most common behavior; (2) the number of primary features in
each cluster shall be sufficient to characterize the hosts.

Table IV shows the clusters obtained by applying the
clustering algorithm set for 23 clusters to the logs of day 2.
The table shows also the qualitative values of the primary
features. The values for secondary and non-relevant features
were left blank. The qualitative values were defined using the
values in Section III-F (including α = 0.2 and θ = 0.001).

An immediate observation is that the largest cluster is
number 14 with 25.58% of the hosts. For this cluster, all
features related to firewalls fall in the VL range. We used
the MAC addresses of a sample of these hosts to find what
kind of hosts they were and found mainly workstations. The
second largest cluster is number 9 with 16.34% of the hosts.
The features of this cluster are almost identical to those of
cluster 14, all VL, with the exception of bursts sent (H). By
inspecting a sample of the hosts we found again well-behaved
machines (bursts do not mean much traffic but peaks of traffic).
These are clearly normal hosts in the company. The rest of
the clusters correspond to hosts with less frequent, possibly
malicious, behavior.

We did not investigate all the smaller clusters, only the three
that looked most suspicious. Cluster 13 has a few problematic
features with value VH: number of packets sent allowed; bursts
of packets sent; number of external IP addresses contacted
in the malicious AS and spam AS lists. The last two are
conspicuous as all the other clusters have VL in these two
features, so we assigned the cluster the class label abnormal-
suspicious-ASs.

We analyzed in more depth some of the hosts in this cluster

Class \ Day day 3 day 4 day 5

abnormal-suspicious-ASs
classified in class 0 1 1
false positives 0 0 0
false negatives 1 1 1

abnormal-authentications-blockedUDP
classified in class 3 6 1
false positives 1 6 0
false negatives 2 1 1

abnormal-blockedTCP
classified in class 0 0 1
false positives 0 0 0
false negatives 1 2 1

Table VI: Clusters classified in the 3 suspicious classes.

and confirmed that there are reasons to suspect of malicious
behavior. We found communication with IP addresses reported
to distribute malware and alarms in an anti-virus about a cou-
ple of Trojan horses. Moreover, it was possible to understand
that some of those hosts were not under tight control of the
company, e.g., because they belonged to external companies
(suppliers).

Cluster 15 has also some problematic features with VH:
number of authentication tries; number of packets sent blocked
by the firewall; bursts of packets sent; number of UDP packets
sent blocked by the firewall. Cluster 20 has also a VH number
of packets sent blocked by the firewall and TCP packets sent
blocked by the firewall. We set the class labels for these two
clusters to abnormal-authentications-blockedUDP (cluster 15)
and abnormal-blockedTCP (cluster 20).

B. Classifying clusters
As explained, the initial classifier is defined during the

first phase of the approach. An option is to define a class
for each cluster, then define the classifier based on these
classes. Following this path we have 23 classes, although in
the previous section we gave names just to 3 of them. This
classifier is then refined in the following iterations of the
process for the next time periods (i.e., days).

Table V shows the values of the features for example hosts
classified in these 3 classes (for lack of space we reduced the
names of the classes and omitted features 6-9 that were never
primary). Each host is shown in a row. Each day the wrong
labels were corrected and the classification model was updated
with the new information. Discrepancies in the early days
are considered normal as the classification model has limited
information. As our approach is incremental, the accuracy of
the predictions will increase over time.

Table VI summarizes the classification for the 3 days to
which the second phase was applied, again just for the three
suspicious classes. The term classified in class is used to mean
the number of clusters classified in that class. The term false
positives denominates the clusters wrongly classified in that
class. Finally, false negatives means the clusters that should
have been classified in that classes automatically but were
not, so they had to be reclassified manually. Ideally the false
positives and false negatives would be zero, which was not
the case. However, these numbers tended to lower with the
number of days, but the total number of days was too small
for them to reach zero.

C. Performance
The last part of the experimental evaluation is an assessment

of its performance, i.e., of time required to run the approach.

6

Cluster 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 55 566 9 207 72 78 61 697 25 86 27 53 1091 54 109 83 459 169 35 34 205 89
% 0.02 1.29 13.27 0.21 4.85 1.69 1.83 1.43 16.34 0.59 2.02 0.63 1.24 25.58 1.27 2.56 1.95 10.76 3.96 0.82 0.80 4.80 2.09

Feature

1 VL VL VL VL VL VL VL VL VL VL VL VL VL VL L VL VL VL
2 VL VL VL VL VL VL L VL VL VL VL VL VL VL L L VL VL VL L
4 VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL
5 VL
6
7
9
10 L VL VL VL VH VL VL VH VL VH VH VL VL VL
11 VL
13 VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL
14 VL VL VL L VL VL VL VL VL VL VL VH VL L VL VL VH VL VL
15 VL VL VL VL VH VL VL VL VL VL VL VH VL VL VL VL
16 VL
17 VL VL VL VL VL VL VL VL VL VL VL VL VL VL L VL L VL
18 VL VL VL VH L H VL VL VH VL VH VL M VH
19 VL VL VL VL VH VL VL VL VL VL VL VL VL VL VL VL M VL
22 VL VL VL VL VL VL VL VL VL VL VL VL VL VL VH VL VL
23 VL VL VL VL L VL VL VL VL VL VL VL VH VL VL VL VL VL VL
24 VL L VL VL VL VL VL VL VL VL L VL VL VL VL VL VL VL
28
29 VL
30 VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL
31 VL
32 VL
33 VL VL VL VL VL VL VL VL VL VL VL VH VL VL VL VL VL VL VL VL VL VL
34 VL VL VL VL VL VL VL VL VL VL VL VH VL VL VL VL VL VL

Table IV: Cluster description in terms of hosts it contains (total 4265) and primary features.

Class \ Feature 1 2 4 5 10 11 13 14 15 16 17 18 19 22 23 24 28 29 30 31 32 33 34

Day 2

suspicious-ASs 0.4 0.0 0.0 0.0 0.0 0.2 0.2 1.0 1.0 0.0 0.0 0.6 0.0 1.0 1.0 0.0 0.0 0.1 1.0 0.0 0.78 1.0 1.0
authentications-blockedUDP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.48 0.0 0.0 0.8 0.0 0.04 0.92 0.0 0.0 0.0 0.16 0.0 0.0 0.0 0.30
blockedTCP 0.4 0.0 0.0 0.0 0.0 0.2 0.2 0.03 1.0 0.19 0.0 0.65 0.53 1.0 0.02 0.0 0.0 0.0 1.0 0.0 0.0 0.00 1.0

Day 3

authentications-blockedUDP 0.2 0.0 0.0 0.0 0.0 0.4 0.2 0.00 1.0 0.0 0.0 0.073 0.0 1.0 0.36 0.0 0.0 0.0 0.26 0.0 0.01 0.03 1.0
authentications-blockedUDP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.14 1.0 0.0 0.0 1.0 0.01 0.16 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00

Day 4

suspicious-ASs 1.0 0.0 0.0 0.0 0.0 0.4 1.0 1.0 0.05 0.00 0.00 1.0 0.0 0.04 0.04 0.0 0.0 0.0 0.24 0.01 0.96 1.0 1.0
authentications-blockedUDP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.08 0.0 0.03 0.0 0.26 0.06 0.0 0.0 0.0 0.0 0.0 0.49 0.24 0.0 0.0 0.0
authentications-blockedUDP 0.4 0.0 0.0 0.0 0.0 0.0 0.2 0.04 0.63 0.0 0.00 0.91 0.0 0.87 0.09 0.45 0.0 0.0 0.0 0.0 0.0 0.0 0.11

Day 5

suspicious-ASs 0.4 0.0 0.0 0.0 0.0 0.2 0.2 1.0 1.0 0.0 0.0 0.69 0.0 1.0 1.0 0.0 0.0 0.5 0.79 0.0 1.0 1.0 1.0
authentications-blockedUDP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 1.0 0.0 0.0 1.0 0.0 0.09 1.0 0.0 0.0 0.0 0.21 0.0 0.01 0.0 0.36
blockedTCP 0.8 0.0 0.0 0.0 0.0 0.4 0.4 0.14 1.0 0.01 0.0 1.0 0.0 1.0 0.44 0.0 0.0 0.0 0.42 0.0 0.03 0.11 1.0

Table V: Feature values for example hosts classified in the 3 suspicious classes (normalized values).

The approach has several steps but, disregarding manual
interventions, the bottleneck is the extraction of the features
from the logs, so the section focus on this aspect. The rest of
the steps take at most 2 minutes.

The overall execution time per day and per log needed to
normalize and extract the features are shown in Table VII. For
day 1, only one job was executed to create the input necessary
to obtain the features of day 2 that depend on the previous day
(features 30–32), so the rest of the rows are empty. It is also
noteworthy that the extraction of data from the DHCP and
authentication server logs took just seconds, as these logs are
small (see Table VIII). The rest of the logs took approximately
1 to 3 hours to be processed. As we use MapReduce, these
times can be reduced simply by increasing the number of cores
used to process the logs.

To understand if the processing time is proportional to the
size of the log we plotted the time to extract features from logs
versus the size of the logs in Figure 2. We considered only
the logs from the first type of firewalls, which were the largest
(tens of GB). The figure suggests that indeed the processing
time increases approximately linearly with the size of the log.

Log \ Day 1 2 3 4 5

Firewall (previous day input) 1h52m 1h34m 2h39m 2h38m
DHCP (IP-MAC Mapping) 24s 24s 25s 24s
Authentication serv. (Session) 48s 49s 49s 50s
Authentication serv. (Authentication) 27s 27s 28s 28s
Firewall (Connection) 55m24 1h36m 1h32m 1h17s
Firewall (End-point) 1h09m 1h38m 1h34m 1h21m

Total 1h52m 3h40m3s 5h54m40s 5h45m42s 2h39m42s

Table VII: Feature extraction time per day and per log.

Log Source \ Day 1 2 3 4 5

Firewall type 1 51 GB 44 GB 69 GB 68 GB 59 GB
Firewall type 2 18 MB 18 MB 18 MB 18 MB 18 MB
DHCP 14 MB 14 MB 14 MB 14 MB 14 MB
Authentication serv. 222 MB 202 MB 201 MB 197 MB 210 MB

Table VIII: Log size per day per log source.

V. RELATED WORK

Several tools have been appearing for processing large logs.
MapReduce aims to process large data sets, but the original
paper mentions the specific case of web logs [8]. Hadoop has
also been much used to process logs [9]. The MapReduce
model is simple so more versatile models have been proposed,
e.g., Pregel [12]. There are also tools that are specific for
processing logs. Splunk is one of the most adopted [13]. It
has powerful visualization, indexing, search, and reporting

7

01:00

01:15

01:30

01:45

02:00

02:15

02:30

02:45

03:00

03:15

40 45 50 55 60 65 70

Ti
m

e
(h

h:
m

m
)

Size (GB)

Previous Day Input
End-point features

Connection features

Figure 2: Time for feature extraction versus size of the logs.

mechanism that can be used for security and other kinds of
analysis. ElasticSearch is a similar open source tool based on
the Apache Lucene text search library [14]. Although able to
analyze logs, even for security, these tools do not discover
misbehaving entities, which is the purpose of our approach.

Data mining and machine learning have been used to ana-
lyze logs before. Chen et al. use hierarchy clustering to analyze
telephony logs to discover faulty states [15]. They do not use
a rich set of features but a single one: pair-wise dissimilarity
between log entries. Data mining has been used to extract user
profiles from logs, e.g., for marketing purposes [16]. Similarly,
data mining has been used to extract performance information
from logs [1]. These works are interesting but they are not
about security and use very different approaches.

We are aware of three papers about large-scale log analysis
for security. Beehive is probably the closest to ours as it also
uses clustering, but it does not do supervised classification
of the clusters, considers much less features, and detects
malicious users instead of hosts [4]. LogMaster aims to mine
correlations of events but, on the contrary of Beehive and
our approach, takes into account the order between events by
analyzing n-ary sequences [7]. This allows to find interesting
forms of misbehavior but limits scalability. LogMaster also
does not aim to identify misbehaving entities specifically.
Giura and Wang present an approach to do near real-time
detection of advanced persistent threats in logs [5]. They
consider several data planes but mining techniques are applied
only to some of them and detection uses the known tech-
niques mentioned above (misuse, anomaly, policy-violation
detection). In summary, neither of these three works combine
data mining and both supervised and unsupervised machine
learning for misbehavior detection in large logs as we do.

Supervised machine learning and data mining techniques
have been much adopted for anomaly-based intrusion detection
[17]. The idea is to define a model of normal behavior based
on a set of training data, then use a distance metric to assess
if runtime behavior deviates from that model. On the contrary
of our approach, this form of detection involves having a data
set that does not contain misbehavior.

VI. CONCLUSION

We present an approach to identify malicious entities based
on large logs from several devices without having to instruct
the system about how entities misbehave. The output of the
process we present is not accurate enough to take automatic
actions, e.g., to quarantine the hosts in a cluster classified as
suspicious. However, it extracts relevant security information
from the logs that otherwise is not directly observable. That in-
formation is valuable to take actions in combination with other
information available in the organization (e.g., type of device,
internal or external host, anti-malware alarms). Although the
process is not fast with a single server is used, having this
information in a few hours is useful for many purposes. The
outputs can also be stored in a database for historical analysis
of the behavior of hosts and eventual actions.
Acknowlegments This work was supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) with reference
UID/CEC/50021/2013 and by Vodafone Portugal. We warmly thank
Naércio Magaia and Pedro Peixe Ribeiro for their assistance.

REFERENCES

[1] A. Oliner, A. Ganapathi, and W. Xu, “Advances and challenges in log
analysis,” Communications of the ACM, vol. 55, no. 2, 2012.

[2] A. Cárdenas, P. Manadhata, and S. Rajan, “Big data analytics for
security,” IEEE Security and Privacy, vol. 11, no. 6, 2013.

[3] ——, “Big data analytics for security intelligence,” Cloud Security
Alliance, 2013.

[4] T.-F. Yen, A. Oprea, K. Onarlioglu, T. Leetham, W. Robertson, A. Juels,
and E. Kirda, “Beehive: large-scale log analysis for detecting suspicious
activity in enterprise networks,” in Proceedings of the 29th ACM Annual
Computer Security Applications Conference, 2013.

[5] P. Giura and W. Wang, “Using large scale distributed computing to unveil
advanced persistent threats,” Science Journal, vol. 1, no. 3, 2012.

[6] Y. Shafranovich, “Common format and MIME type for comma-separated
values (CSV) files,” Request for Comments (RFC) 4180, Oct. 2005.

[7] X. Fu, R. Ren, J. Zhan, W. Zhou, Z. Jia, and G. Lu, “LogMaster: mining
event correlations in logs of large-scale cluster systems,” in Proceedings
of the 31st IEEE Symposium on Reliable Distributed Systems, 2012.

[8] J. Dean and S. Ghemawat, “MapReduce: simplified data processing
on large clusters,” in Proceedings of the 6th USENIX Symposium on
Operating Systems Design and Implementation, Dec. 2004.

[9] T. White, Hadoop: The Definitive Guide. O’Reilly, 2009.
[10] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine

Learning Tools and Techniques, 3rd ed. Morgan Kaufmann, 2011.
[11] P. S. Bradley, U. Fayyad, and C. Reina, “Scaling EM (expectation-

maximization) clustering to large databases,” Microsoft Research, Tech.
Rep. MSR-TR-98-35, 1998.

[12] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, 2010.

[13] J. Stearley, S. Corwell, and K. Lord, “Bridging the gaps: joining infor-
mation sources with Splunk,” in Proceedings of the 2010 Workshop on
Managing Systems via Log Analysis and Machine Learning Techniques,
2010.

[14] O. Kononenko, O. Baysal, R. Holmes, and M. W. Godfrey, “Mining
modern repositories with ElasticSearch,” in Proceedings of the 11th
IEEE Working Conference on Mining Software Repositories, 2014.

[15] C. Chen, N. Singh, and S. Yajnik, “Log analytics for dependable
enterprise telephony,” in Proceedings of the 9th European Dependable
Computing Conference, 2012.

[16] G. Stermsek, M. Strembeck, and G. Neumann, “A user profile derivation
approach based on log-file analysis,” in Proceedings of the International
Conference on Information and Knowledge Engineering, 2007.

[17] D. Denning, “An intrusion-detection model,” IEEE Transactions on
Software Engineering, vol. 13, no. 2, 1987.

8

